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Abstract—Multi-sensor fusion models play a crucial role in
autonomous driving perception, particularly in tasks like 3D
object detection and HD map construction. These models provide
essential and comprehensive static environmental information
for autonomous driving systems. While camera-LiDAR fusion
methods have shown promising results by integrating data from
both modalities, they often depend on complete sensor inputs. This
reliance can lead to low robustness and potential failures when sen-
sors are corrupted or missing, raising significant safety concerns.
To tackle this challenge, we introduce the Multi-Sensor Corruption
Benchmark (MSC-Bench), the first comprehensive benchmark
aimed at evaluating the robustness of multi-sensor autonomous
driving perception models against various sensor corruptions.
Our benchmark includes 16 combinations of corruption types
that disrupt both camera and LiDAR inputs, either individually
or concurrently. Extensive evaluations of six 3D object detection
models and four HD map construction models reveal substantial
performance degradation under adverse weather conditions and
sensor failures, underscoring critical safety issues. The benchmark
toolkit and affiliated code and model checkpoints have been made
publicly accessible1.

Index Terms—Autonomous Driving, Perception Robustness, 3D
Object Detection, HD Map Construction, Multi-Sensor Corruption

I. INTRODUCTION

The perception system is a critical component of au-
tonomous vehicles, serving as the foundation for interaction
between the vehicle and its driving environment. The sys-
tem’s performance—encompassing both accuracy and robust-
ness—fundamentally influences the decision-making processes
of autonomous vehicles. Notably, the robustness of perception
algorithms is essential for the practical deployment of these
vehicles, directly impacting the safety of future transportation
systems for the general public.

Recently, researchers have developed fusion-based perception
methods that integrate outputs from multiple sensors to enhance
overall capabilities, leading to significant performance improve-
ments across various tasks. For example, multi-sensor fusion
approaches for 3D object detection and HD map construction
have demonstrated superior accuracy compared to single-sensor
methods that rely solely on cameras or LiDAR. However,
these performance evaluations are typically conducted on
clean datasets without any corruption, creating a gap in our

1https://msc-bench.github.io/
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Fig. 1. Radar charts display the performance of state-of-the-art multi-sensor
3D object detection models (left) and HD map construction models (right)
under the Multi-Sensor Corruption Benchmark (MSC-Bench). We present NDS
scores for 3D object detection methods and mAP scores for map construction
methods across each corruption type and severity level. MSC-Bench: #1
Clean, #2 Motion Blur, #3 Temporal Misalignment, #4 Spatial
Misalignment, #5 Fog, #6 Snow, #7 Camera Crash, #8 Frame Lost,
#9 Cross Sensor, #10 Cross Talk, #11 Incomplete Echo, #12
Camera Crash & Cross Sensor, #13 Camera Crash & Cross
Talk, #14 Camera Crash & Incomplete Echo, #15 Frame Lost
& Cross Sensor, #16 Frame Lost & Cross Talk and #17 Frame
Lost & Incomplete Echo. The radius of each chart is normalized based
on the Clean score. The larger the area coverage, the better the overall
robustness.

understanding of the robustness of fusion-based perception
methods under adverse conditions.

The robustness of perception algorithms refers to their
performance in adverse conditions, including challenging
driving environments, complex scenarios, and sensor failures.
Unlike single-sensor algorithms, multi-sensor perception sys-
tems face a broader range of issues, such as misalignment and
synchronization problems. Additionally, adverse conditions
like fog or snow can affect sensors differently. Understanding
how these factors impact multi-sensor performance and whether
sensor fusion can mitigate these effects is essential and requires
thorough investigation.

In this paper, we introduce 16 types of corruption specific to
multi-sensor perception algorithms and evaluate the robustness
of fusion-based methods across two autonomous driving
tasks: six 3D object detection methods and four HD map
construction methods. Results, as shown in Fig. 1, reveal
significant performance discrepancies between ”clean” and
corrupted datasets. Key findings include: 1) Camera-LiDAR
fusion methods achieve strong performance by leveraging
complementary information but often rely on complete sen-
sor data, making them vulnerable to disruptions. 2) In 3D
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Fig. 2. Overview of the MSC-Bench. Definitions of the multi-sensor corruptions in MSC-Bench. Our benchmark encompasses a total of 16 corruption types
for multi-modal perception models, which can be categorized into weather, interior, and sensor failure scenarios.

object detection, sensor failures and misalignments degrade
performance, particularly under simultaneous disruptions like
Frame Lost & Cross Sensor and Camera Crash & Cross Sensor,
indicating a lack of adequate domain transfer and generalization.
3) In HD map construction, adverse weather, especially
snow corruption, poses the greatest challenge by obscuring
roads and reducing LiDAR reflectance, while Frame Lost &
Cross Sensor conditions further emphasize the detrimental
effects of dual-source information loss. In summary, both 3D
object detection and HD map construction models are highly
susceptible to sensor corruption, particularly from dual-source
disruptions; future fusion models should enhance robustness
against LiDAR variations and adapt to partial or missing camera
data to improve reliability in real-world scenarios. Through
extensive benchmark studies, we further unveil crucial factors
for enhancing the reliability of multi-sensor perception models
against sensor corruption. The key contributions of this work
are three-fold:

• We introduce Multi-Sensor Corruption Benchmark (MSC-
Bench), making the first attempt to comprehensively
benchmark and evaluate the robustness of multi-sensor
autonomous driving perception models against various
sensor corruptions.

• We analyze six 3D object detection models and four
HD map construction models using MSC-Bench, offering
valuable insights into design choices that enhance the
robustness of multi-modal models.

• We will provide our data generation source code and
benchmark, allowing for the reproducibility of the results
presented in this study, which will serve as a valuable
contribution to the field.

II. RELATED WORK

Multi-Sensor 3D Object Detection The 3D object detection
task focuses on identifying and localizing objects in three-
dimensional space by predicting their 3D bounding boxes and
categories using data from sensors like LiDAR and cameras,
which is crucial for applications such as autonomous driving

and robotics. While early methods relied on single sensors, the
release of extensive autonomous driving datasets has spurred
research into multi-sensor fusion for enhanced accuracy. Recent
approaches include BEVFusion [1], which extracts features
from both cameras and LiDAR using a Bird’s-Eye View
(BEV) space; DeepInteraction [2], which facilitates interactions
between modality-specific representations; and TransFusion
[3], which uses a transformer-based mechanism for adaptive
fusion. Other methods, such as SparseFusion [4], utilize parallel
detectors for instance-level fusion, while CMT [5] incorporates
a Coordinates Encoding Module for position-aware features. Is-
Fusion [6] further improves detection by integrating scene-level
and instance-level fusion to enhance feature collaboration.
Multi-Sensor HD Map Construction The HD map con-
struction task involves creating high-resolution maps that
provide detailed vectorized representations of geometric and
semantic information, such as lane boundaries and road
structures, which are essential for accurate localization and
path planning in autonomous driving. Recent camera-LiDAR
fusion methods [7]–[10] leverage the semantic richness of
camera data and the geometric precision of LiDAR. BEV-
level fusion, which combines inputs from both sensors into
a shared BEV space, has gained attention [1] for effectively
integrating complementary features. However, existing methods
often depend on complete sensor data, making them less
robust to missing or corrupted information, which can lead
to significant performance degradation. This paper focuses on
evaluating the robustness of multi-modal HD map construction.
Driving Perception Robustness Researchers have recently
focused on the robustness of various autonomous driving
perception tasks. Studies like RoBoBEV [11] evaluate the
robustness of BEV perception tasks, while others aim to develop
more resilient models and strategies. Robo3D [12] benchmarks
LiDAR-based semantic segmentation and 3D object detection
under sensor failures. Zhu et al. [13] assess the natural and
adversarial robustness of BEV models, introducing a 3D
consistent patch attack for spatiotemporal realism. PointDR
[14] and UniMix [15] propose domain-adaptive methods for



TABLE I
CORRUPTION METHODS OVERVIEW: TYPES, MODALITIES, DESCRIPTIONS, AND CONFIGURATIONS OF THREE SEVERITY LEVELS OF CORRUPTION.

Corruption Modality Description Level 1 Level 2 Level 3

Camera Crash C Dropping view images 2 4 5
Frame Lost C Dropping temporal frames 2/6 4/6 5/6
Cross Sensor L Cross-sensor data by the number of beams to drop 8 16 20
Crosstalk L Light impulse interference by adjusting the percentag 0.03 0.07 0.12
Incomplete Echo L Incomplete LiDAR readings by adjusting the drop ratio 0.75 0.85 0.95
Temporal Misalignment LC Frozen frame applied with probability p 0.2 0.4 0.6
Spatial Misalignment LC Extrinsic misalignment in degrees applied with probability p 1°, 0.2 2°, 0.4 3°, 0.6
Motion Blur LC Jitter noise from a Gaussian distribution with σt 0.06 0.10 0.13
Fog LC Approximated visibility in meters 300 m 150 m 50 m
Snow LC Approximated snowfall intensity in mm/h 5 mm/h 35 mm/h 70 mm/h

enhancing 3D semantic segmentation in adverse conditions.
MapBench [16] and Multi-corrupt [17] offer benchmarks for
evaluating the robustness of HD map construction and 3D
object detection, respectively. In contrast to previous work, we
present a more comprehensive benchmark that incorporates
multi-sensor corruptions for fusion-based autonomous driving
perception models, covering both HD map construction and
3D object detection tasks.

III. BENCHMARKING MULTI-SENSOR CORRUPTION

A. Multi-Sensor Corruption Definition

The Multi-Sensor Corruption Benchmark (MSC-Bench)
includes 16 corruption types, categorized into weather, interior,
and sensor failure scenarios (see Fig. 2). It is constructed by
corrupting the val set of nuScenes [18]. Definitions of the
corruption types can be found in Tab. I, with additional details
provided below.

• Camera Crash: Simulates continuous loss of images
from certain viewpoints due to camera failure. Determine
the level of corruption based on the number of dropped
cameras. Note that this type of corruption applies only to
camera sensors, while the LiDAR sensor remains clean.

• Frame Lost: Represents random frame loss to assess
the model’s resilience to intermittent data loss, with the
corruption level determined by the probability of frame
dropping. Note that this type of corruption applies only to
camera sensors, while the LiDAR sensor remains clean.

• Cross Sensor: Arises due to the large variety of LiDAR
sensor configurations (e.g., beam number, field-of-view,
and sampling frequency). Determine the level of corruption
based on the number of beams dropped. Note that this
type of corruption applies only to LiDAR sensors, while
the camera sensor remains clean.

• Crosstalk: Creates noisy points within the mid-range areas
between two (or multiple) sensors, simulating interference.
Determine the level of corruption by adjusting the per-
centage of light impulse interference. Note that this type
of corruption applies only to LiDAR sensors, while the
camera sensor remains clean.

• Incomplete Echo: Represents incomplete LiDAR readings
in some scan echoes. The level of corruption is determined
by adjusting the drop ratio of these readings. Note that

this type of corruption applies only to LiDAR sensors,
while the camera sensor remains clean.

• Fog: We use a fog simulator [19] to simulate LiDAR fog
corruption. To maintain scene consistency between images
and point clouds, we adapt the LiDAR fog parameters for
the image fog generation process.

• Snow: We use a snow simulator [20] that models snow
particles as opaque spheres and computes the reflection
properties of wet surfaces, enabling us to corrupt the point
cloud and image data based on snowfall levels.

• Motion Blur: To replicate intense motion, vibrations, and
the rolling shutter effect, we introduce jitter noise from a
Gaussian distribution with a standard deviation of σt into
both point cloud and image data.

• Spatial Misalignment: We introduce translation and
rotation misalignment, creating a spatial offset between
point cloud and camera inputs. We adjust the rotation
angle and the proportion of affected data based on the
severity level.

• Temporal Misalignment: Timestamps from modalities
like LiDAR and cameras are not always perfectly synchro-
nized, so we introduce temporal misalignment to both the
camera and point cloud data.

• Camera Crash & Cross Sensor: For the camera sensor,
we apply Camera Crash corruption, while for the LiDAR
sensor, we use Cross Sensor corruption.

• Camera Crash & Cross Talk: For the camera sensor, we
use Camera Crash corruption, and for the LiDAR sensor,
we apply Crosstalk corruption.

• Camera Crash & Incomplete Echo: For the camera
sensor, we apply Camera Crash corruption, and for the
LiDAR sensor, we use Incomplete Echo corruption.

• Frame Lost & Cross Sensor: For the camera sensor, we
apply Frame Lost corruption, and for the LiDAR sensor,
we use Cross Sensor corruption.

• Frame Lost & Cross Talk: For the camera sensor, we
use Frame Lost corruption, and for the LiDAR sensor, we
use Cross Talk corruption.

• Frame Lost & Incomplete Echo: For the camera sensor,
we apply Frame Lost corruption, and for the LiDAR
sensor, we use Incomplete Echo corruption.



TABLE II
BENCHMARKING 3D OBJECT DETECTION MODELS. WE REPORT
DETAILED INFORMATION ON THE METHODS GROUPED BY 1 INPUT
MODALITY, 2 BACKBONE, AND 3 INPUT IMAGE SIZE. ”L” AND ”C”

REPRESENT LIDAR AND CAMERA, RESPECTIVELY. ‘SWIN-T”, “R50”,
“VOV-99”, AND “SEC” ARE SHORT FOR SWIN-TRANSFORMER, RESNET50,

VOVNET, AND SECOND. WE REPORT NUSCENES DETECTION SCORE
(NDS) AND MEAN AVERAGE PRECISION (MAP) ON THE OFFICIAL

NUSCENES VALIDATION SET.

Method Venue Modal Backbone Image Size NDS↑ mAP↑ mRS↑ mRRS↑

BEVFusion [1] ICRA’23 C & L Swin-T & SEC 704× 256 71.44 68.72 54.88 0.00
SparseFusion [4] ICCV’23 C & L Swin-T & SEC 800× 448 73.15 71.02 60.11 17.01
TransFusion [3] CVPR’22 C & L R50 & SEC 800× 448 70.84 66.72 60.12 12.30

DeepInteraction [2] NIPS’22 C & L R50 & SEC 800× 448 69.09 68.72 59.01 6.93
CMT [5] ICCV’23 C & L VoV-99 & SEC 1600× 640 72.90 70.30 67.17 32.93

Is-Fusion [6] CVPR’24 C & L Swin-T & SEC 1056× 384 74.00 72.8 62.10 22.42

TABLE III
BENCHMARKING HD MAP CONSTRUCTORS. WE REPORT DETAILED

INFORMATION ON THE METHODS GROUPED BY 1 INPUT MODALITY, 2 BEV
ENCODER, 3 BACKBONE, AND 4 TRAINING EPOCHS. ”L” AND ”C”

REPRESENT LIDAR AND CAMERA, RESPECTIVELY. ”EFFI-B0,” ”R50,”
”PP,” AND ”SEC” REFER TO EFFICIENTNET-B0, RESNET50,

POINTPILLARS, AND SECOND. AP DENOTES PERFORMANCE ON THE
CLEAN NUSCENES val SET. THE SUBSCRIPTS b., p., AND d. DENOTE

boundary, pedestrian crossing, AND divider, RESPECTIVELY.

Method Venue Modal Backbone Epoch APp.↑ APd.↑ APb.↑ mAP↑ mRS↑ mRSS↑

MapTR [10] ICLR’23 C & L R50 & SEC 24 55.9 62.3 69.3 62.5 55.91 0.00
MBFusion [21] ICRA’24 C & L R50 & SEC 24 61.6 64.4 72.5 66.1 50.83 −4.46

GeMap [22] ECCV’24 C & L R50 & SEC 24 66.3 62.2 71.1 66.5 55.25 4.77
HIMap [23] CVPR’24 C & L R50 & SEC 24 71.0 72.4 79.4 74.3 50.29 4.27

B. Robustness Evaluation Metrics

To compare the robustness of different 3D object detectors
and HD map constructors in multi-modal corrupted scenarios,
we introduce two robustness evaluation metrics.

Resilience Score (RS) We define RS as the relative
robustness indicator for measuring how much accuracy a model
can retain when evaluated on the corruption sets, which are
calculated as follows:

RSi =

∑3
l=1 Acci,l

3×Accclean
, mRS =

1

N

N∑
i=1

RSi, (1)

where Acci,l denotes the task-specific accuracy scores, with
NDS (NuScenes Detection Score) for 3D object detection and
mAP (mean Average Precision) for HD map construction, on
corruption type i at severity level l. N is the total number
of corruption types, and Accclean denotes the accuracy score
on the “clean” evaluation set. mRS (mean Resilience Score)
represents the average score, providing an overall measure of
the model’s robustness across all types of corruption.

Relative Resilience Score (RRS) We define RRS as the
critical metric for comparing the relative robustness of candidate
models with the baseline model and mRRS as an overall metric
to indicate the relative resilience score. The RRS and mRRS
scores are calculated as follows:

RRSi =

∑3
l=1 Acci,l∑3

l=1 Acc
base
i,l

− 1, mRRS =
1

N

N∑
i=1

RRSi, (2)

where Accbasei,l denotes the accuracy score of the baseline
model.

IV. EXPERIMENTS AND ANALYSIS

A. Benchmarking Multi-Sensor 3D Object Detection

Candidate models Our MSC-Bench includes a total of six
multi-sensor 3D object detection models: CMT [5], DeepInter-
action [2], TransFusion [3], SparseFusion [4], BEVFusion [1]
and Is-Fusion [6]. We present the basic information for these
models in Tab. II, including input modality, backbone, image
size, and performance on the official nuScenes validation set.

3D Object Detection Benchmarking Analysis We present
the overall robustness benchmarking results, including mRS
and mRRS, for the six multi-sensor candidate models in Tab. II.
The table shows that model robustness under corruption does
not strongly correlate with performance on the clear validation
set. For example, while Is-Fusion achieves the highest NDS
and mAP scores, its mRS and mRRS scores are below
expectations. In contrast, CMT exhibits excellent robustness,
achieving the highest robustness scores.

To analyze the models’ robustness across different corruption
types, we present the Resilience Scores for 16 corruption types
in Tab. IV (top) and illustrate robustness performance across
varying severity levels in Fig. 3. The data shows that sensor
failure and misalignment-related corruptions, such as Cross
Sensor, Camera Crash & Cross Sensor, and Frame Lost & Cross
Sensor, significantly impact model performance. In contrast,
individual sensor failures like Camera Crash, Frame Lost, and
Incomplete Echo have minimal effects on robustness. However,
when these failures occur simultaneously, as seen in Camera
Crash & Incomplete Echo and Frame Lost & Incomplete Echo,
model robustness is substantially compromised.

From Fig. 3, most corruption types lead to a linear decline in
model robustness as severity increases. However, the robustness
degradation from Camera Crash and Frame Lost is relatively
minor, showing a distinct pattern compared to other corruptions.
Notably, for Temporal Misalignment and Fog, robustness
remains stable at severity levels 1 and 2 but drops dramatically
at level 3 as severity intensifies.

Fig. 5 shows the relative resilience scores of different models
based on BEVFusion. DeepInteraction underperforms the base
model in eight corruption types, while only CMT surpasses
the base model across all corruption types, achieving the best
performance in 12 of them.

B. Benchmarking Multi-Sensor HD Map Construction

Candidate models Our MSC-Bench includes four multi-
sensor HD map constructors: MapTR [10], HIMap [23],
MBFusion [21], and GeMap [22]. We present the basic
information for these models in Tab. III, including input
modality, backbone, training epochs, and performance on the
official nuScenes validation set.

HD map construction Benchmarking Analysis Tab. III
presents the overall robustness performance of the four multi-
sensor HD map construction models, measured by mRS
and mRRS. MapTR and GeMap achieve comparable scores,
outperforming MBFusion and HIMap. Performance on specific
corruption types is detailed in Tab. IV (bottom), highlighting



TABLE IV
ROBUSTNESS BENCHMARK OF STATE-OF-THE-ART MULTI-MODAL METHODS UNDER MULTI-SENSOR CORRUPTIONS. FOR THE 3D OBJECT DETECTION

TASK, WE USE NDS AS THE METRIC. ADDITIONALLY, WE USE MAP AS THE METRIC FOR THE HD MAP CONSTRUCTION TASK.

Model Motion
Blur

Temporal
Mis.

Spatial
Mis. Fog Snow Camera Crash Frame Lost Cross Sensor Cross Talk Incomplete Echo Camera Crash,

Cross Sensor
Camera Crash,

Cross Talk
Camera Crash,

Incomplete Echo
Frame Lost,
Cross Sensor

Frame Lost,
Cross Talk

Frame Lost,
Incomplete Echo mRS↑

3D
Object

Detection

CMT [5] 84.25 83.05 80.91 80.44 83.15 71.69 70.35 65.21 69.73 73.84 47.71 52.97 58.93 45.78 49.98 56.78 67.17
DeepInteraction [2] 87.64 85.69 73.02 75.03 75.87 61.97 60.68 45.36 64.76 59.76 33.84 48.94 46.00 33.80 46.80 44.97 59.00

TransFusion [3] 82.50 82.88 68.15 76.15 72.58 71.54 71.03 39.82 57.34 53.53 37.90 54.39 51.59 37.68 53.61 51.16 60.12
SparseFusion [4] 81.61 82.25 71.93 74.79 73.42 66.28 65.12 41.26 56.69 52.21 42.27 54.75 53.52 41.10 52.50 52.10 60.11
BEVFusion [1] 85.92 82.01 71.66 75.26 75.16 64.47 64.48 30.25 44.14 45.29 30.25 44.14 45.30 30.25 44.15 45.29 54.88
Is-Fusion [6] 86.82 81.61 71.12 75.46 71.97 69.22 67.75 47.40 72.05 62.62 38.11 55.87 51.84 37.70 53.36 50.74 62.10

HD
Map

Construction

MapTR [10] 70.00 76.94 69.05 67.94 19.55 62.56 58.08 63.34 66.40 88.16 33.28 36.32 61.76 30.56 33.28 57.28 55.91
HIMap [23] 83.77 74.93 77.31 75.56 23.79 38.09 35.26 65.28 78.47 86.41 19.25 27.59 37.55 19.38 27.19 34.86 50.29

MBFusion [21] 79.69 74.96 68.19 67.97 23.57 52.60 46.25 50.26 64.13 81.56 25.47 30.97 51.92 22.68 27.67 45.47 50.83
GeMap [22] 55.08 72.99 86.87 63.63 19.58 46.44 38.98 89.02 93.83 96.52 32.37 40.51 46.01 29.05 34.58 38.58 55.25
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Fig. 3. Robustness against all corruption types and severity levels in 3D object detection tasks is evaluated through the Resilience Score (RS), calculated using
the NDS score for varying severity levels.
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Fig. 4. Robustness against all corruption types and severity levels in HD map construction tasks is assessed using the Resilience Score (RS), calculated based
on the mAP score for different severity levels.

that Snow severely impacts all models, reducing mAP to a range
of 19 to 24. Additionally, combinations of sensor corruptions,
such as Camera Crash & Cross Sensor, Camera Crash & Cross
Talk, Frame Lost & Cross Sensor, and Frame Lost & Cross
Talk, lead to significant performance degradation.

Fig. 4 illustrates how the performance of the four models
changes as corruption severity increases, with most models
showing a linear decline. Notably, variations in the severity of
Incomplete Echo have a negligible impact on all four models.
Among the models, GeMap and MapTR achieve the best
results in eight corruption types, demonstrating very similar
performance on the aforementioned combination corruptions.
Fig. 6 shows the relative resilience scores of other HD map
construction models compared to MapTR. GeMap, HIMap,

and MBFusion underperform the base model in 5, 8, and 10
types of corruption, respectively. This disparity highlights the
varying levels of robustness among these models, emphasizing
the need for effective strategies to enhance resilience against
diverse types of sensor corruption.

V. CONCLUSION

In this paper, we introduced the Multi-Sensor Corruption
Benchmark (MSC-Bench) to assess the robustness of multi-
sensor autonomous driving perception models under 16 types
of corruption. Our analysis of six 3D object detection mod-
els and four HD map construction models revealed signifi-
cant performance discrepancies between clean and corrupted
datasets, highlighting vulnerabilities to sensor disruptions,
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particularly dual-source failures like Frame Lost & Cross
Sensor. While camera-LiDAR fusion methods demonstrated
strong performance, they struggled with incomplete sensor
data. Additionally, adverse weather conditions, especially snow,
severely impacted HD map construction by obscuring critical
elements. These findings underscore the need for more resilient
fusion models that can effectively handle partial or missing
sensor data and misalignment.
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